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Abstract

The  statistical characteristics of wind-shear turbulence are
Isotropic turbulence serves as the basis of comparison for the

turbulence which exists in a wind shear. The question of how

modelled.
anisotropic

turbulence

"scales” in a wind shear is addressed from the perspective of power spectral

density.
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Nomenclature
second-order anisotropic tensor
two-point time-dependent second-order velocity correlation
tensor
decay constant defined in Equ. (12)
polynomial basis functions for Q(ee*)
second-order isotropic tensor
mean-flow wind shear gradients
homogeneous polynomial of order m in the variables, q,r
third-order three-point scalar correlation function
normalized scalar velocity correlation function
third-order two-point velocity correlation tensor
total flow velocity
mean-flow velocity

airplane flight speed

time-dependent parameters characterizing anisotropic
turbulence
longitudinal/transverse  correlation  functions for  isotropic

turbulence

scalar function peculiar to third-order velocity moments of
turbulence

separation vector

magnitude of separation vector

turbulent flow velocity

turbulence downwash

Cartesian coordinate variables

integral scale for isotropic turbulence
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change in integral scale due to anisotropy
energy-scaling factor
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dimensionless constants
non-dimensionalized wave-number
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isotropic turbulence intensity
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power-spectral density

power-spectral density for isotropic turbulence
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1. Background

Meteorological events such as thunderstorms and unstable frontal systems have
long been considered dangerous from the perspective of aviation safety.
Investigations into the alarming number of recent low-level aircraft accidents
involving thunderstorms around airports have revealed one meteorological
culprit—a strong blast of air directed toward the ground which has come to

be known as a "microburst”.

The mechanism by which the microburst is created is a complex and sometimes
violent one. From the investigation of a particular airliner crash at JFK
airport, much was learned about the convective atmospheric dynamics which
cause the microburst. It was postulated by Fujita1 that a violent atmospheric
disturbance may occur when moist upper air drops precipitation through a
relatively dry air layer below it. As the precipitation evaporates, the dry
layer cools; consequently, a stream of dense cold air suddenly replaces the
ground-heated low-altitude air. Furthermore, as the resulting downdraft
penetrates through the existing horizontal flow, turbulence is invariably
generated. The downdraft eventually impacts the ground and spreads out
radially. During the evolution of a microburst, the dimensions of the
low-altitude phase may be on the order of 15-30 meters high with a radial
sprecad of 2.5 kilometers. Realization of its relatively small meteorological
size serves as the motivation for the term "microburst”. Wind velocity
information subsequently obtained from flight recorders has sustained Fujita's
explanation. The typically distinguishing characteristics of the microburst
are winds which are localized and variable.  Abrupt changes in wind speed
and/or direction over a short atmospheric distance are referred to in the‘
literature as “wind shear”. For purposes of this study. however, wind shear

will be defined as a flow which has a spatially nonconstant mean-velocity



profile.  Flight through a ”wind shear-infected area” will tax both pilot and
aircraft since related velocity gradients may drop airspeed to critically low
levels. In summary, microbursts and wind shear pose an immediate threat to
flight operations at low altitudes due to their adverse effects on aerodynamic

lift/aircraft response.

The scenario of microburst encounter by an aircraft in the landing mode is
shown in Figure 1.  First the aircraft semses an uncharacteristically strong
head wind.  Although turbulence typically accompanies the increased airspeed,
pilot confidence is high during this phase of the encounter since aircraft
performance increases with the additional aerodynamic lift. Because the
intent is to land the aircraft, the pilot intuitively trims. Eventually, the
head wind becomes a tail wind, and at this point performance is immediately
and seriously degraded since the distinct head-to-tail wind swing has reduced
airspeed enough to possibly lose flying speed. In the last ten years, an
estimated 575 people have been killed in commercial aircraft accidents in the
United States alone due to the microburst phenomenon. Likewise,
microburst-induced accidents have also been reported in Great Britain,
Germany, France, Italy, Australia, and Japan. Consequently, a fundamental
understanding of microbursts, related wind shear and turbulence, is a

high-priority research issue.

Flight science authorities agree that the “solution” to the wind shear
"problem” is multi-faceted. The existing research programs of NASA and FAA
focus primarily on three elements: 1) hazard characterization: 2) sensor
technology; and 3) flight management and operations.  Hazard characterization
is the study of the physics of the microburst phenomenon. Inherent within

this phase of the research effort is analysis of aircraft aerodynmamics in wind



shears and in heavy rain. Wind shear velocity profiles, rainfall effects, and
turbulence models are important contributions from this component of the
programs. Sensor technology deals with the prediction and detection of
potentially  dangerous  meteorological events; it further subdivides into
airport-fixed and airborne sensor technologies. = Next Generation Radar fields
(NEXRAD) are presently being investigated by NOAA, FAA and USAF for future use

as airport radars. The other detection device is the in situ look-ahead
sensor.  This onboard computer system is being devised to scan the forward
atmospheric environment, evaluate a "hazard index”, and annunciate a warning
to the pilot in a time period adequate to ensure either avoidance or escape of
the threat.  Look-ahead sensor technology is beyond state-of-the art, and is
not expected to be operational until the mid-1990°'s. The third component of
microburst research is flight management. Simply put, this phase concentrates
on informing the pilot on how to safely get the aircraft out of a microburst
encounter subject to aircraft performance constraints. An important element
of such studies is flight simulation. Simulators allow pilots to experience
threatening wind shears in a controlled environment, with intent to better
prepare them for potential real-life events. Realistic wind  shear
representations in flight simulators are practical and economical, and can
help crews coordinate their "escape” efforts in critical situations. Realism
in the simulation of flight through hazardous atmospheric environments has
improved with the introduction of lateral and vertical winds, as well as
vortex and turbulence influences. The focus of the present work is in the
bazard characterization aspect of the programs; its principle objectives are
to model the fluid-dynamical characteristics of turbulence associated with
low-level sheared mean-flow, and quantify the effect of these characteristics

on aircraft response. All of these issues will be herein addressed from the

perspective of power spectral density (psd).



2, Introduction

Since microbursts pose a hazardous threat to flight operations only at low
altitudes, the role that the ground plays as a fixed boundary is therefore
important in terms of turbulence modelling. The presence of the ground
generates in the microburst a brand of turbulence which when sensed by the
aircraft during its take-off or landing is both nonstationary and anisotropic.
The objectives of this investigation are thus to model the statistical
characteristics of same, and gain a quantitative understanding, in terms of
scaling effects, of the stochastic nature of the turbulence sensed by an

aircraft during a microburst encounter.

The task of mathematically describing the turbulence associated with a typical
microburst (shown in Figure 1) is straightforward. @ The pioneering works of
Taylor2, Karman and Howarth3, and Robcrtson4 have illustrated the well-defined
fashion in which the concepts of two-point velocity correlations can be used
to quantify the kinematical aspects of isotropic turbulence; Bat«:helor5
extended these concepts to the case of axisymmetric turbulence—-that which
has a defined form of anisotropy. Axisymmetric turbulence, with its tendency
to prefer one spatial direction, is the logical candidate for modelling wind
shear turbulence (with its particular anisotropy resulting from the microburst
impacting the ground). Although classical axisymmetric theory produces
turbulence  velocity  correlation  functions that are  position-independent
(homogeneous) and time-varying, the turbulence under consideration is assumed
inhomogeneous and in a steady-state (”frozen”) condition; nonetheless., it can

6 that correlation functions for frozen, inhomogeneous

be easily shown
turbulence may be converted into time-evolution equations for homogeneous

turbulence by duly scaling out a characteristic velocity. Accordingly,




Cij(g\g.r) ~ Cij(t,'r,) > Cij('r,_.t) and Sijm(g\g,'r') ~ Sijm(t,,r‘) > Sijm('r‘,t), and the
physics of the inhomogeneous, steady-state turbulence aligns with the physics
of classical turbulence; the ([ .t)-notation rather than the (t, I )-notation is

the accepted standard.

For the specific case of an airplane in either the take-off or landing mode,
recent work7, which incorporates axisymmetric theory, has resulted in the
"airplane-sensed” two-point velocity autocorrelation for anisotropic

turbulence downwash, viz.
C. (L) = <w(g,n w(x + £.0> = {o'g} + {a|r] + b} : (1)

here the magnitude of a ~ O(w«), where o« is the airplane glide-slope angle, b

is a parameter (to be defined later) which can be either positive or negative,

and g is the transverse correlation function of isotropic turbulence.
Equation (1) is based on the assumption that during take-off or landing the
aircraft senses only a small amount of anisotropy in the (necessarily) large
amount present in the microburst. Note that the velocity correlation

separates into isotropic and anisotropic components, and takes the general

i isotropic anisotropic
form, Cas(l’t) ~ {correlation} + {correlation}’ where

isotropic _ 2 anisotropic| _
{correlation} g8 and {correlation} a|r| +b.

The contributions of isotropy and anisotropy to the total correlation are
shown for b > O only in Figure 2; recall that b can be either positive or

negative.

An important aspect of the ensuing analysis is how turbulence “scales” in a.
microburst. A common correlation used for nonstationary processes is the
uniformly modulated, viz. C(r,t) = az(t)R(r) where 02(t) is the time-varying

modulator; implicit in this correlation is the constraint imposed on the




integral scale—that of time-invariance. In recent studiess, however, a more
general form has been formulated which incorporates time-dependence in both
intensity and integral scale, viz. C(r,t) = pgR(ér) where n = n(t) = o’(t) and
& = &t) = 1/A(t). Allowing the correlation to evolve in such a manner
permits its geometric shape to distort in time, while its r-algebraic form is
retained. Figure 3 illustrates the “self-preserving” behavior of such a
correlation function. With C@O,t) in this case = az(t), intensity  for
self-similarity is clearly an  ordinate-axis  scaling effect while the
normalized  correlation  function,  R({r), automatically  incorporates  the
integral  scale/abscissa-axis scaling effect. Although  self-preservation is
introduced here strictly from the standpoint of “scaling-effects”, its
hypothetical existence and subsequent analysis can be be justified on purely

"dynamical system” grounds (see Appendix).

3. Power Spectral Density Analysis

The power spectral density is a common way of illustrating energy distribution
versus frequency, and is an immensely popular tool in both gust analyses and
turbulence simulations; mathematically, it is the Fourier transform of the
autocorrelation function. The psd for the aforementioned downwash formulates

as

d(/V.) = | <wE.HwE + r,t)>e ' PVar = | {o’g + a|r| + b}e'®Var, (2)

where 7 = -l Since the correlation function consists of isotropic and
anisotropic components, so too will its transform; specifically ¢(x,t) =

¢V(x.) + ¢™(x,1), where

oV(k.t) = o*A 143K and 6P t) = doA {Aﬁ} l-COS(Kb/_fl_ﬁl_)'(3)

(Kb/aA)2

Here ¢(xc,t) is the total psd sensed by the aircraft as it flies through the



wA/V a non-dimensionalized wave number, o the isotropic

microburst, k
intensity, A the longitudinal correlation length (integral scale), and 4A4 the
change in integral scale due to anisotropy. The scaling effects discussed

earlier are evident upon inspection of Equ. (3).

The distinct advantage that the psd representation has over its transform
partner, the autocorrelation function, is its more defined statement of the
modelling parameters of anisotropy, viz. 44, a, and b, in relation to total
turbulent energy. For a glide-slope which is maintained during a microburst
encounter, it follows that a =~ constant since (recall) magnitude {a(t)} ~
O(«). Hence, b plays the more important role in terms of modelling the
anisotropy due to the boundary presence. Since b is related to intensity by
2

6> + b = (6 + 40)*, Ao ~ increment in intensity contributed by anisotropy, for

neglected higher-order terms b becomes

_ 2 {240 Ag)) _ 4 .2(40) _ .
b= o 222 ¢ [49]) . 202(49] = 2040, @
note that for pure isotropic turbulence, b = 0. One way to quantify the

collective effects of A4, a, and b on the airplane-sensed turbulence is to
"™,/ (5, 1).
To analyze the effect of A4A4/A on A(x,t), set b/(ad) = constant; typical
values of 0 = § ft/s, A = 1000 ft, V = 225 ft/s and a ~ O(a) = Q(3O) = 0(0.052

introduce an "energy scaling factor”, defined as A(x,t)

rad) are chosen, and Ag/o is allowed to vary up to 0.5 (a feasible value for
wind-shear turbulence severity). Incorporating Equ. (4) gives b/(ad) =
0(0.5). Figure 4 shows that for 44/A4 = 0.1, the energy scaling factor is as
high as 35% for 0 < k¥ < 2 (0 <= w =< 0.45 rad/sec)—a frequency range which
falls within that specified for the guidance and control phases of an aircraft
mission involving a wind shear.  Hence, a realistic estimate of the energy
transferred to the airplane requires that anisotropy be accounted for in both

turbulence models and related flight simulations.

10



4. Constraints Impesed by Navier-Stokes

Knowledge of the sheared mean-wind/turbulence interplay requires that the
governing equation of the fluid be considered. The Navier-Stokes equation for
a turbulent, high Reynolds number, steady-state fluid with both body and

pressure forces neglected is

'——a'x—— el O. (5)

With U, = Ui + u, the two-point correlation method9 yields

3 an 3 an ! B
at Cij + me ij -2 Zﬁ; Simj + 6x , Cim =0 (6)
where Cij ~ Cij( L.t) = <uiuj’>, SimJ ~ Snn,( r.t) = <uiumuj’> and (cf. Figure
1) r = (r, 0, a r); index contraction results in
3 3Ui OU, 3
Gt St 2 S =0 ™

Equation (7) requires the solution of separate isotropic and anisotropic

dynamical problems, viz.

d d =
at Iii -2 —Hf; Simi =0 (8)
and
3 au au
3t Al+*a—c +Tcm=°’ ©)
where 7:10 I. + A, = C. The basis for a scaling comparison (the isotropic

ij ij ij
case) will be considered first.

Introducing the f and g functional representations for the correlation tensors
gives a result whose first integral is the Karman-Howarth equation for high

Reynolds number isotropic turbu]cnceg, viz.

5 @' -0 [H 4 K =0, (10)
where k = k(r,t) is the scalar function required to specify third-order

11




velocity product moments. Since turbulence self-interaction is not altered by
self-preservation, it follows that k(r,t) also has such an evolution with
time, i.e. k(r,t) = k({r) = k(r/A). Incorporation of this feature into the

r-integration of the Karman-Howarth equation results in

L {'0Awm} = o', (11)

where
C, = S i4k(0) 6k(0)} d@ = negative scale-independent constant, (12)
and 0 = r/A; a specific numerical value of C, will be determined later.

Solution of Equ. (11) gives the time-dependence,

C
A(t) = f a’(t)dt, (13)
2
o (t)
for the integral scale. The power-law form for isotropic intensity, oty ~

t,n = %1, +2. ... , converts Equ. (13) into

2C
A@M) ~ gty (RN = 31, 32, (14)

for n = -1, A(t) ~ O@'?).

To consider the anisotropic part of the problem, viz. Equ. (9), gradients must
first be defined. The two wind-shear profiles chosen for analysis are
illustrated in Figures 5 and 6, and will hereinafter be referred to as ”"Shear
Flow I" and "Shear Flow II”, respectively. Note that both profiles have a
"head-to-tail wind swing”, a phenomenon frequently observed in microburst
encounters. The mean velocity for Shear-Flow 1 is U = {U(2),0.0} = {Mlz,0,0}
as shown in Figure §; M is negative on the headwind side of the microburst
and positive on the tailwind side. Analysis of Shear Flow II is restricted to-

the two-dimensional case with Ui = {U(x),0,W(z)} and gradients of the form
au_ . dw M, > 0

a4 = " 4z = Incorporation of Shear-Flow I characteristics into

12



Equ. (9) yields
S (alr|+b) - MgPar I + Marg? 2T 28 . o (15)
integration in r from 0 to oo produces
S {(F°0440} - MPVat® = 0, (16)
o0
where { (a|t| + b) dr = ¢°4A(t). The solution to Equ. (16) is
0

Mla

AA@) = | P ()A(tdt. (17
a”(t)
For az(t) ~ t" and the integral scale of Equ. (14), Equ. (17) becomes
4M1Cka m+4)/2
440 ~ G F 2y G F o ¢ ,n = 1, +2, ...; (18)
specifically, A4A() ~ Q(tm) for o’(t) ~ o A similar analysis for

Shear-Flow II yields
4M_C
44O ~ - BaF 2y (30 F 9)

t(n +4)/2

,n = +1, +2, ...

Like Shear Flow I, Shear Flow II has 4A(t) ~ O(*?) for o’(t) ~ t.

5. Determination of C_

The theory of turbulence strictly prohibits the presence in the analysis of
any adjustable constants; therefore a full closure of the dynamical equation
is not achieved until a value for Ck is determined. The fact that Ck is
formed from an integral of k(ee*) (cf. Equ. (12)) explicitly suggests that
aside from some fundamental limiting constraints, viz. IR ) {k(ee®)} ~ Q(rf
and t-3 & {k(***)} = 0, the exact functional form of k(ee®) is not critical,
i.e. k(eee) itself is not necessarily a unique function. All that is required
for any and all possible k(eee), say k(e**) — kN("'), N = 1,23, . . .. is
that {4 Eo r'lkN(r,t)dr} = Ck be independent of N. A preliminary step is

therefore to develop a representative algebraic form for k(r,t) ~ k(r/A).

13




To accomplish this while simultaneously saying as little as possible about
k(ee*) itself, it is here proposed to kinematically describe the three-point
correlation, <u(x,thu(x + q,thu(x + r,t)> = Q(q.r,t), where u(x.t) is only one
component of the three-component turbulence velocity field and x is a
one-dimensional position vector, i.e. x = (x,0,0), etc Note that for
self-preservation, this  correlation accordingly scales as Q(q.r,t) =
03(t)s(q/A,r/A), where s(0,r/A) = k(r/A);, furthermore, the functional form of
Q(***) is such that it must satisfy certain symmetry properties, viz. Q(q,r.t)
= Q(r,q,t) = Q(-q,r-q,t)ll. Since Q(e**) expanded in a Taylor's series about
q = r = 0 produces
Q(q,r,t) = a +aq + blr + a2q2 + cgr + b2r2 + ...

it follows from the required symmetry that the time-dependent parameters, a,
bm, and c,m = 0,1,2,..., cannot be completely arbitrary. In fact they must

each be such that eventually Q(***) expresses as12

[ o]
Q@ = T A (OP (q.1)

m=0

where each P (s**) is a homogeneous polynomial in ¢, r and individually must
themselves satisfy the same symmetry as Q(q.r.t), i.e. Pm(q,r) = Pm(r,q) =
Pm(-q,r-q), m = 0,1,2,... . Fortunately, there are only two (2) fundamental
such forms, viz. F(qr) = q - qr + 1 and F(qr) = 2q3 - 3q2r - 3qr* + 21,
since any other higher-order such form can be represented as a combination of
F|(°") and/or F2("°); there is no linear homogeneous algebraic form in q,r
which satisfies the required symmetry. For example, the fourth-order
polynomial is identical to {Fl(q,r)}z, while the fifth-order one is identical
to {Fl(q,r)FZ(q,r)}. The existence of such a complete set of polynomial basis
functions for any sequence of systematically generated algebraic forms was
originally established in a theorem formulated by David Hilbert in 189013,

The theorem need not be quoted here, but the essence of it is that if an

infinite sequence of algebraic forms (the sequence here is Po(q,r) = 1,

14 ‘.



Pl(q,r) = 0, Pz(q,r) = q2 - qr + . P3(q,r) = 2q3 - 3q2r - 3qr2 + 2r3, etc.)
is constructed according to some general rule (the "rule” here is the required
q.r-symmetry), there comes a point in the construction where the set of all
available independent such forms is exhausted and any form constructed
thereinafter contains absolutely no new information, being merely a
modification/repetition of what has already preceded. What this means for the
case at hand is that the most general sixth-order form must be a linear
combination of the products, Fl3(q,r) and F22(q,r), while a seventh-order such
form is {Flz(q,r)Fz(q,r)}. A simple appropriate algebraic expression for

14

Q(q.r.t) which for q = O fits data reported by Stewart™ "~ is thus

AF_(q.r)

Qq.r.t) = a’(t) -
{1 + BF (q,n}

where A = ﬂA'3(t), B = yA'z(t), and B,y ~ dimensionless constants;
accordingly,

28(r/A)°

k(r.t) ~ k(r/A) = .
{1 + yp@rin)}?

The specific f and y for the data sets highlighted by Stewart (loc. cit.) are:
Curve 1 (cf. Figure 7); B = -1.48, y = 7; Re = 5300;
Curve 2 (cf. Figure 8); f = -3.0, y = 12; Re = 21,200,
Curve 3 (cf. Figure 9); p = -7.42, y = 22, Re = 42,400,
K

The value of Ck which most closely approximates all three cases is C =

-0.16mr.

6. Conclusions and Concluding Remarks
Since integral scale provides a measure of turbulence randomnessﬁl’1 0,
realistic estimates of this scale are essential to ensure related flight

simulation fidelity. The role played by anisotropy in a wind shear encounter

is quantified in the correlation length, L A(t) + AA(t). As an aircraft in

the landing mode penetrates the headwind portion of Shear Flow I, 44 > 0

15




since M and « are negative in this phase of flight. The turbulence sensed

there by the aircraft is therefore less random than that predicted by

isotropic theory. The tailwind phase of such an encounter provides 44 < 0—a

more random turbulence in comparison with isotropy. A similar landing mode

analysis of Shear-Flow II yields negative A4 on both sides of the microburst,
thus making the attendant turbulence more random than the isotropic case in

all phases of the encounter.

The significance of anisotropy in microburst turbulence models has herein been
considered from the perspective of self-similarity in the turbulence power
spectral density. The considered energy scaling factor clearly defines the
inadequacy of using isotropic theory only to estimate the necessarily
anisotropic turbulent energy in a typical wind shear. The formulated psd
representation of the turbulent downwash is a major step towards enhanced
simulation of low-level turbulence, with the relative importance of the
characteristics considered above becoming fully quantified only upon eventual

flight-simulator implementation.
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Appendix: The Case for Self-Preservation

Nonstationary  behavior whose time-evolution can be effected by two
time-dependent scaling effects is important not only because of its relatively
simple features, but also because of its immediate practical application.  For
nonstationary  processes the two-time correlation  function, Q(tl,t2) =
<w(tl)w(t2)>, can be considered as a two degree-of-freedom system in which t
= (t, + t2)/2 and v = t -t play the role of uncoupled principal
coordinates; indeed in the (t,7)-coordinate reference frame the two
degree-of-freedom system at hand is instead duly converted into one whose
physical characteristics accordingly vary with time, i.e. Q(trtz) > Q(t,t) -
C(t,t/V) ~ C(t,r), where V =~ rr. And even though time-varying systems can be
regarded as filters which “select” eigenfunctions in the pure sense rather
than juét simple sinusoids, the natural tendency in their analysis is to treat
them as systems whose properties do not change "appreciably” with repect to
time. The underlying motivation for this approach is that classical modal
analysis is not explicitly restricted to systems which are time-invariant
only; it is only necessary that the differential equation governing the
system, as well as the boundary conditions, be separable into a function of
time alone and in this case a function of non-dimensionalized length alone,
i.e. that temporal changes in the system be in some sense "uniform”. The
suggested separation for dynamical systems is thus the essence of
self-preservation for nonstationary behavior in random processes. The
mathematics of same proceeds as follows. Consider the most general case of
time-varying intensity and integral scale, viz. C(t,7)=0(t-1/2)a(t+1/2)R(t,7),
t = r/V. If o(***) is expanded in Taylor's series about T = 0, the result for
C(t.7) is
Ct,7) = o’ ({1 - T/4T*}R(t,7)

where only linear terms in t have been retained for o(t + 7/2), and T =

18



-1
a(t) [gg] is the time-dependent scale over which o(t) may be assumed to vary
T=0

linearly with T, viz.
ot £ t/2) = o(t){1 % t/2T}.
Since R(e**) scales with A(t), i.e. R(t,7) ~ R(r/A)T, and o(***) scales with
T, the modified expression,
C(t,7) = *(){1 - (1/2A4)X(AIT)’}R(>9) ,

allows for analysis of the coupling between the two scales, T and A. Note
that as far as R(e*e) is concerned, R(**¢) = 0 for 7 > A, so that the major
contribution to C(t,7) from R(ee*) itself is from values of 7 < A. Therefore,
if T » A, it follows that C(t,7) = az(t)R("o), i.e. the t-dependence of
C(t,r) is determined by R(®**) only and is unaffected by the 7-dependence of

{a(t - T/2)o(t + ©/2)}.

YA A(t) in this expression considered as a "time-length” scale.

19
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